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Clinical decision making (CDM) is a process that
healthcare professionals undertake when making as-
sessments about patients' conditions and decisions about
the care to provide [1, 2]. Traditional CDM is founded on
either unconscious intuition or conscious inference
frameworks with well‐defined logic [3]. Intuition, defined
as understanding without a rationale, integrates tacit
knowledge and pertinent experience developed over
years of practice to automate cognitive processing devoid
of formalized rules [4, 5]. However, its unconscious na-
ture obscures the precise identification of initiating cues
and inference logic, limiting its application in CDM [6].
Distinct from intuition, conscious inference frameworks
possess well‐defined logic and execution steps, predomi-
nantly encompassing the hypothetico‐deductive model
(HDM) [7] and pattern recognition model (PRM) [8].

1 | CLASSIC CDM METHODS

The HDM involves four indispensable steps: cue acquisi-
tion, hypothesis generation, cue interpretation, and hy-
pothesis evaluation [7]. Initially, cue acquisition

systematically collects patient medical information per
requirement by clinicians. Subsequently, multiple pre-
liminary hypotheses are derived from the retrieved infor-
mation, enabling clinicians to either use an established
theory based on gathered information or propose hy-
potheses according to their clinical knowledge and domain
expertise [9]. This is followed by cue interpretation, in
which clinicians discern cues pertinent to their initial
hypotheses and accordingly refine these hypotheses [10].
The HDM culminates in hypothesis evaluation, whereby
the hypotheses are either corroborated or refuted based on
the amassed evidence. Should all hypotheses be rejected,
another round of the HDM will commence. Ng et al. pre-
sent an application of the HDM in a real‐world CDM task
[11]. When diagnosing patients with acute chest pain,
clinicians gather cues related to cardiovascular risk fac-
tors, smoking history, recent viral infections, and other
relevant information. Based on this information, they
generate diagnostic hypotheses, such as acute coronary
syndrome, myocarditis, pericarditis, or pneumonia. They
interpret these cues and evaluate the hypotheses, refining
and ruling in or out possibilities through further in-
vestigations, such as electrocardiograms, complete blood
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counts, and chest radiographs. In contrast to the analytical
HDM, PRM employs nonanalytical matching of new
clinical cases with similar patterns stored in memory,
specifically for patients encountered previously or docu-
mented within established guidelines [8, 10]. In routine
clinical encounters, PRM outpaces CDM at an exceptional
rate. Notably, in instances of ambiguity, the analytical
HDM approach retains its superiority as a more effective
solution [8, 10].

2 | CONTEMPORARY CDM METHODS

Although these traditional methods are widely imple-
mented in real‐world practice and some of them, including
the HDM, have been recognized as gold standards [12],
machine learning (ML), as demonstrated in Figure 1, is
increasingly adopted to handle the unprecedented volume
of information generated by advanced medical in-
struments and electronically recorded by medical systems
[13]. This abundance of data poses challenges for tradi-
tional CDM methods relying on manual effort, but ML
techniques hold promise because they enable computers to

automatically learn projection functions between raw data
and targets of interest without explicit instructions from
human experts [14]. For example, support vectormachine,
random forest, and k‐nearest neighbor have been used to
diagnose Alzheimer's disease [15], breast cancer [16], and
Parkinson's disease [17], respectively. In addition to these
conventional techniques, deep learning, a specialized ML
subset focusing on design and training strategies of artifi-
cial neural networks, has emerged as the state‐of‐the‐art
approach for various CDM tasks owing to its extensive
parameterization and intricate pattern recognition capa-
bility [13].

3 | FUTURE CDM METHODS

Though purely data‐driven ML has demonstrated supe-
rior accuracy over traditional CDM methods [18], ML
exhibits drawbacks in interpretability because of its
complex architectures for information processing [19].
Interpretability stands as a pivotal characteristic within
CDM to rectify potential erroneous decisions that
endanger patient lives. To address this challenge and

F I GURE 1 Comparison of a traditional method (hypothetico‐deductive model) versus a contemporary machine learning approach
(random forest) in scholarly publications over the last 25 years. Specific numbers were retrieved through a systematic inquiry on Google
Scholar employing the search terms “clinical decision making” in conjunction with either “hypothetico‐deductive model” or “random
forest” on August 21, 2024.
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further augment other capabilities of ML, including its
exceptional accuracy, researchers collaborate with clini-
cians to incorporate clinical knowledge and domain
expertise into ML methodologies [20]. As depicted in
Figure 2, this integration, termed knowledge‐enhanced
ML (KEML) [21], can be conceptualized as a fusion of
clinical knowledge and domain expertise extracted from
traditional CDM alongside powerful ML architectures,
encompassing both conventional models and deep
learning approaches [22].

The foremost advantage of KEML over contemporary
ML is its ability to significantly improve interpretability
[23]. Although various explainable artificial intelligence
techniques have been proposed to supplement ML with
interpretability, these data‐driven explanations frequently
suffer from logical inconsistencies stemming from noise
within datasets or limited applicability to particular co-
horts [24]. For instance, a previous study showed that data‐

driven ML classifiers for pneumothorax often rely on
irrelevant regions beyond the lesion area for diagnosis,
resulting in overfitting to specific data sources [23]. Inte-
grating clinical knowledge of disease occurrence can
enhance both the generalization and interpretability of
these classifiers. Another illustrative example is the
knowledge‐guided interpretable disease prediction
method, which showcases the application of medical
knowledge graphs to modeling personalized patient data
and improving CDM interpretability by extracting crucial
graph paths as prompts for ChatGPT to generate clinician‐
comprehensible natural language explanations [24]. In
addition, KEML leverages external clinical knowledge to
improve CDM accuracy further. Dynamic gated recurrent
neural network exemplifies the enrichment of the repre-
sentation of a specific medical event with additional in-
formation about its adjacent events [25]. KEML also
alleviates the biases of data‐driven ML through the

F I GURE 2 Schematic plot depicting the fusion of classic and machine learning methods leading toward future knowledge‐enhanced
machine learning for clinical decision making.
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involvement of healthcare professionals and their medical
expertise. Chen et al. systematically summarized the po-
tential of KEML to mitigate disparity and inequity in each
stage of the ML life cycle [26]. Hence, the integration of
clinical knowledge into ML not only amplifies interpret-
ability and accuracy but also mitigates biases, ultimately
advancing the real‐world deployment of ML‐driven
healthcare solutions [27].

In this commentary, we summarized the evolution of
CDMfrom traditional to contemporaryML techniques and
elucidated the underlying rationale driving this paradigm
shift, emphasizing the imperative of adapting to the era of
big data. While embracing ML represents a crucial
advancement inmodeling clinical information, knowledge
and expertise embodied in traditional methods should not
be disregarded. Therefore, we advocate for KEML, a novel
paradigm capitalizing on the strengths of both methodol-
ogies, to propel CDM to an exceptional level of interpret-
ability, accuracy, and fairness [28].
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